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Abstract

The study of envelopes requires a strong dialog between algebraic computations and graphic
representations. Both are available using a Computer Algebra System, and sometimes accom-
panied by a Dynamic Geometry System. The two kinds of software have different affordances,
whence different characteristics of the animations. Visualization raises specific problems. We
illustrate this with examples of 1-parameter and 2-parameter families of surfaces in 3D space.
In certain cases, the envelopes have non-isolated singularities; we study them switching between
parametric and implicit presentations. Finally, networking between kinds of software and between
visualization and symbolic computations is discussed.

1 Introduction
Envelopes of parametric families of plane curves, and of parametric families of surfaces have been 
studied for a long time, but disappeared from the basic syllabus decades ago; see Thom’s remarks 
about that in 1962 [41]. Actually, the topic has never been abandoned, because of its centrality in 
numerous fields, such as robotics and safety zones in industrial plants or entertainment parks [11], 
pollution and depollution of soils [44]. The introduction of mathematical software, both for research 
and for teaching, and other technologies, enabled a revival of the topic for a more general audience 
than the specialists, and at an early stage of education. This is the goal in [19], focusing on families 
of plane curves. Nevertheless, they continued to be studied by researchers. Easy examples can be 
presented to students, even very young, using threads and nails. See, for example Figure 1; it shows 
an astroid as both a creation with threads (what is called string art) and a model with GeoGebra. Such 
concrete realizations may be easy to construct, but with more advanced examples, the problem of 
visualization is acute. Note that the concrete realization shows actually a surface in 3D because of the 
thickness of the threads. In order to get rid of the problem, we have to look at the artistic creation from 
above. Note also that the intuitive meaning of the word envelope may be misleading. An envelope, 
in the sense of what we will see later, is not a wrapping. In Figure 1, the astroid is realized as the
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(a) An astroid as a piece of string art (b) A DGS model of the same piece of art

Figure 1: String art and a DGS model

envelope of segments of length 1 whose endpoints are on the axes. Here the envelope wraps the
elements of the family, but this not always the case [11, 12, 18, 20]; see the examples developed in
Section 4.

Figure 1(b) has been obtained with a GeoGebra online applet. The construction is purely geomet-
ric and uses dragging with Trace On. This construction can be generalized to 3D in various ways;
one of them is described in an online applet and a snapshot of a partial construction is shown in Figure
2 (pay attention to the astroid in the xy-plane in the 3D plot: the 2D window and the 3D window are
totally synchronized). A detailed study of this surface is beyond the scope of this paper, as it requires
the definition of an envelope of a family of line segments in space.

Figure 2: A partial construction of a 3D generalization of an astroid as an envelope of segments

The surface ”looks like” a Beltrami surface (see Figure 3 and worksheet [S1]), which provides a
model for the hyperbolic plane. It is given by the following parametrization:

x = cos v
coshu

y = sin v
coshu

z = u− tanhu

(1)

where u ∈ R and v ∈ [0, 2π]. In fact, it is easy to prove that this is not the surface we explore above.
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Figure 3: Pseudo-sphere aka. Beltrami surface

Automated methods for the exploration of envelopes have been developed and implemented in
software, for example in GeoGebra-Discovery, a companion package of new commands for GeoGe-
bra, for automated exploration, discovery and proofs (see Section 2). They have been developed for
envelopes of families of plane curves; from personal discussions, it is reasonable to hope to see in
the next future such automated commands on 3D too. in the present paper, we explore envelopes of
parameterized families of surfaces in R3, therefore we cannot use existing automated tools for 2D,
but we use other features available in CAS (here Maple 2022) and DGS (here GeoGebra). Note that a
CAS has strong plotting features, but not with the same dynamics as a DGS, and a DGS may contain
a CAS component [28], but generally not as powerful as a CAS. With both kinds of software, we
use commands such as solve to solve systems of equations (either polynomial or not). This may be
transparent to the user, with the drawback of using the CAS as a blackbox. We use the algebraic algo-
rithms for exact computations, implicitization of the parametric presentations, with elimination and
Gröbner packages, and of graphical features, for plotting and animating the plots. Working together
with a CAS and a DGS as in [18] offers opportunities to build bridges towards visual arts. In certain
occurrences, exact implicitization is impossible; for this approximate methods have been explored
and developed [40].

New affordances of the software induce always an interest for new tasks [26, 19], including new
proofs of classical results. In particular, the possibilities offered by dragging points directly on the
screen is a powerful tool for exploration and expressing conjectures; see [3]. Nevertheless, dragging
may not yield easily understood results in 3D as in 2D (see subsection 4.2). An analysis of the
construction of such new tasks, enhancing a new working scheme based on exploration, is developed
in [24]. Exploration leads to conjectures, and eventually to discovery and to proofs. Once again,
they have mostly been developed and documented in 2D, but some of them can be adapted for 3D. In
this paper we relate to the same old-new topic: envelopes of parameterized families of surfaces. An
example is briefly presented at the beginning of Section 2.

The Electronic Journal of Mathematics and Technology, Volume 17, Number 2, ISSN 1933-2823

103

https://github.com/kovzol/geogebra-discovery


On another level, the name of the game is given by the 4 C’s of 21st education, namely Collaboration,
Communication, Critical Thinking and Creativity [31, 34, 38]. If most of the time, people think about
the first two C’s as between humans, in fact they exist also between machines and between humans
and machines; see [13]. The two last C’s are purely inter-humans.

The insertion of Arts in STEM education offers ways to develop creativity; this point is discussed
in [16]. The string art displayed above in Figure 1 is such an example. Figure 4 is a photo (from the
Wikipedia page) of the Guggenheim Museum in Bilbao, Spain. The general shape and parts of the
buildings, namely the cuspidal edges, will evoke some details studied in Section 2.

Figure 4: Guggenheim Museum, Bilbao,Spain

In fact, we may point to students’ creativity but also, and first, to educators’ creativity, in order to
propose modern applications of their teaching. Numerous occurrences of mathematics in situation can
be proposed, as briefly shown in [11] for safety zones in industrial plants where robots are at work, or
in entertainment parks. Based on [4] and [42], Barabash and Naftaliev analyze in [6] the changes in
definitions and in the construction of mathematical meaning induced by technology. Understanding
te different definitions of an envelope (Section 2), is a good example.

After [20, 21], the present paper proposes a contribution to the exploration of envelopes of pa-
rameterized families of surfaces. Actually it reports on ways for the technology-assisted study of
envelopes. In most examples, computations are fully presented, but sometimes they are not, in order
not to increase the length of the paper. In a few cases, we have to leave the computations open as the
CAS could not give an answer in what we can call a reasonable time. We consider these questions
as open and plan to present a solution in a subsequent paper. In Section 4.1, we explore a family of
spheres, its envelope and the singular locus of this envelope, comparing this with a similar situation
in 2D.

The present paper is based on an invited lecture at the ACTM 2022 conference in Prague (Czech
Republic), December 2022.

2 Envelopes of families of plane curves
The study of envelopes of 1-parameter families of plane curves, including working with technology,
is well-developed and documented, and important developments have been obtained during the last
decade; see [9, 19, 8]. For 1-parameter families of plane curves, exploration with a Dynamic Ge-
ometry System (DGS) has proven to be very fruitful and efficient. Tools have been developed for
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automated exploration and determination of envelopes; they are part of the package GeoGebra Dis-
covery. A guide to the package is given in [32]. The commands Envelope and Locus are central
tools for this automated exploration; see [29, 33] for a general description of the automated reasoning
tools (ART) of GeoGebra. The dragging together with the Trace On feature have proven efficient for
the exploration of teh special case of envelopes in 3D called canal surfaces [14], but in general the
center of gravity moves towards the CAS. For a general discussion of automated tools in education,
see also[35].

There exist several different and non-equivalent definitions of an envelope in the literature. For 1-
parameter families of plane curves, they have been explained by [27, 9] and the relations between the
different kinds of definitions have been settled. Plotting technologies help to visualize the differences
between the definitions. One of these 4 definitions of an envelope, the only one used by Berger [7],
and which has been used in [19], reads as follows:

Definition 1 Let Ck be a family of plane curves given by an equation F (x, y, k) = 0, where k is a
real parameter. An envelope D of the family is the curve determined by the solutions of the system of
equations {

F (x, y, k) = 0
∂
∂k
F (x, y, k) = 0

(2)

This is the definition that we use in this work.
The present example will serve both as an introductory one, and as the basis of what is shown in

subsection 4.3. Consider the circle C centered at the origin with radius 1, and the family of circles
centered on C and tangent to the x-axis. Figure 5 is a snapshot of a GeoGebra applet: one of the circles
of the family is enhanced and dotted, and the nephroid is plotted with a thick line. Computations for
such an example are given in [19]. The Envelope command of GeoGebra provides both a plot and a

Figure 5: A nephroid as an envelope

polynomial equation, namely:

4y7 + 12x2y5 + 12x4y3 + 4x6y − 12y5 − 24x2y3 − 12x4y − 15y3 + 12x2y − 4y = 0 (3)

The polynomial in left-hand side is reducible: it is the product of y by a polynomial of degree 6, which
gives the equation of a nephroid. The factor y describes the x-axis, which is not surprising as all the
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circles are, by definition, tangent to this axis. Nevertheless, only a segment of this axis is actually
an envelope of the given family of circles; the x-axis is the Zariski closure of the required segment,
and that is what the CAS actually computes. This discussion can be avoided using a trigonometric
parametric presentation for the objects involved in the construction.

The factorization of the 7th degree polynomial has been performed with the CAS implemented
in GeoGebra. This step was not a must here, as the factor y is easily identified. We mention the
possibility to factor using the CAS, as in other cases, factorization may be non-trivial and then the
CAS may be helpful. This step is important to explore whether the obtained variety is reducible or
not. Recall that as work is performed over R, it happens that the obtained variety is the union of
two disjoint components, but these are impossible to distinguish by algebraic means. For example, it
happens with isoptic curves of conics [22, 23].

3 Envelopes of families of surfaces
The translation of Definition 1 to a 1-parameter family of surfaces in 3D-space reads as follows:

Definition 2 Let Sa be a family of surfaces in the 3D-space given by an equation of the form F (x, y, z, a) =
0, where a is a real parameter. If it exists, an envelope of this family is the surface given by the solu-
tions of the following system of equations:{

F (x, y, z, u) = 0
∂F
∂u
F (x, y, z, u) = 0

. (4)

Adapting two other definitions from [9] to 3D yields the following definitions. We consider a
1-parameter family of surfaces Su, u ∈ R.

Definition 3 The envelope E1 is the union of the limits of intersections of infinitesimally closed sur-
faces Su and Su+ε.

Definition 4 The envelope E2 is a surface tangent to all the surfaces Su.

This is the 3D version of the definition used in [33], for their Envelope command. recall that we used
it for the nephroid in Section 2.

It can be easily shown that E1 ⊂ D and E2 ⊂ D. A 2D case where the inclusion is not an equality,
i.e. E2 6= D is explored in [12].

Families of planes have been studied in [19, 20]. In general, 1-parameter families of planes have
an envelope, with the following properties:

• The envelope is a ruled surface.

• The envelope has singular points forming a cuspidal edge.

• The tangents to this cuspidal edge are generators of the envelope.
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3.1 First example of a family of planes: polynomial coefficients
Consider the family of planes given by the polynomial F (x, y, u) = x + uy + 2u2z − 3u3, where
u is a real parameter. The envelope obtained according to Definition 2 has the following parametric
presentation 

x = 2u2t− 6u3

y = −4ut+ 9u2

z = t

(5)

and the following implicit equation

32xz3 − 4y2z2 + 108xyz − 12y3 + 243x2 = 0. (6)

Equation (9) has been obtained from Equations (8) by elimination of the parameters. Three views if
the envelope are shown in Figure 7 in order to emphasize its remarkable features. In the first one, the
cuspidal edge is enhanced. The cuspidal edge, i.e., the set of non-isolated singularities is the curve

(a) (b) (c)

Figure 6: The envelope of the family of planes with equation x+ uy + 2u2z − 3u3 = 0

determined by the following parametric equations:
x = 8t3

243

y = −4t2

9

z = t

(7)

It can be obtained by various ways, either computing separately the partial derivatives of the left
hand side of Equation (9) and looking for their common vanishing set. These derivatives can also be
computed simultaneously with Maple’s Gradient command. Finally, note the similarity with certain
parts of the museum in Bilbao shown in Figure 4.

3.2 Second example: trigonometrical coefficients
Consider now the family of planes whose equation is F (x, y, z, u) = 0, where F (x, y, u) = x cosu+
y sinu+ z cos 2u+ 1 and u is a real parameter. The envelope obtained according to Definition 2 has
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the following parametric presentation
x =

(
2w cos(u)2 − 3w − 1

)
cos(u)

y =
(
2w cos(u)2 + w − 1

)
sin(u)

z = w

(8)

For every real number u, there exists a real number v such that cosu = 1−v2

1+v2
and sinu = 2v

1+v2
. With

this substitution, Equation (8) can be transformed into a rational parametrization, and from there
polynomials are defined, which generate an ideal J in R[x, y, z, v, w]. By elimination, an ideaJE is
obtained in R[x, y, z], generated by a single polynomial G(x, y, z) given by:

G(x, y, z) = x6 + 3x4y2 + 15x4z2 + 3x2y4 − 78x2y2z2 + 48x2z4 + y6 + 15y4z2

+48y2z4 − 64z6 − 18x4z − 144x2z3 + 18y4z + 144y2z3 − x4 − 2x2y2

+80x2z2 − y4 + 80y2z2 + 128z4 + 16x2z − 16y2z − 64z2.

(9)

The desired variety is V (G). An extra factor z2 appears in the output and is irrelevant to the question.
Two views of the envelope are shown in Figure 7 in order to emphasize its remarkable features. In
the first one, the cuspidal edge is enhanced. Denote by F (x, y, z) the left hand side of Equation

(a) (b)

Figure 7: The envelope of the family of planes with equation x+ uy + 2u2z − 3u3 = 0

(9). The singular points are found by solving the system of equations ∂F
∂x

= ∂F
∂y

= ∂F
∂z

= 0. These
partial derivatives can also be computed simultaneously with Maple’s Gradient command. The solve
command provides an answer featuring the RootOf place holder, which can be resolved using the
allvalues command. The output consists of 8 real isolated points and 4 imaginary points, which are
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irrelevant here, and 4 space curves, given by the following parametric presentations:

(x, y, z) = (0, 2
√
−2t2 − 2t, t)

(x, y, z) = (0,−2
√
−2t2 − 2t, t)

(x, y, z) = (2
√
−2t2 + 2t, 0, t)

(x, y, z) = (−2
√
−2t2 + 2t, 0, t)

(10)

Together, the first pair of equations describes a circle. So does the 2nd pair. The cuspidal edge is the
union of two circles in perpendicular planes. Figure 8 helps to understand its structure and position
in the envelope. Note that 4 more components of non-isolated singular points seem to exist, but they

Figure 8: Enhanced visualization of the cuspidal edge

do not appear in the algebraic output. A strong zooming should show that the surface is smooth there,
but this requires a more powerful DGS than what we used.

The algebraic abilities of the Computer Algebra System (CAS) in use here, namely Maple 2022,
are identical for the case of plane curves and for the two cases of surfaces. We mean that the same
commands, such as solve, can be utilized. The software uses pattern recognition and the eventual
options entered by the user to decide which algorithm to use. The same remarks apply to visualization,
with the plot3d command instead of plot, together with the suitable options. Note that the same
plot3d command is useful to plot surfaces and curves in R3, but for the last a spacecurve command
is also available. Note also that visualization is more problematic in the 3D case than in the plane
[21], and this makes the transition non-trivial. In particular, the representation on the screen (a 2-
dimensional surface) of objects in 3D space requests the choice of a suitable mesh. The standard
choice is rectangular, and yields often strange plots, as explained in [17]. Choosing an accurate mesh
is a must, and generally a parametric presentation of the surface provides an accurate plot. This has
been discussed in [43]. Figure 7 shows that quite well. Anyway, a consequence is that the respective
role importance of a DGS and of a CAS are switched: in the 3D case, the CAS is dominant.
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4 Envelopes of 2-parameter families of surfaces
A definition of envelopes of a 2-parameter family of surfaces, similar to Definition 2 reads as follows:

Definition 5 Let Su,v be a family of surfaces in the 3D-space given by an equation of the form
F (x, y, z, u, v) = 0, where u and v are real parameters. If it exists, an envelope of this family is
the surface given by the solutions of the following system of equations:

F (x, y, z, u, v) = 0
∂F
∂u
F (x, y, z, u, v) = 0

∂F
∂v
F (x, y, z, u, v) = 0

. (11)

We will now explore two examples, both of families of spheres centered on an ellipsoid, but whose
topology is different.

4.1 Envelope of a 2-parameter family of spheres
We consider the ellipsoid E in R3 whose respective half-axes are denoted by a, b, c respectively (a >
0, b > 0, c > 0). A parametric presentation for the ellipsoid E is as follows:

x = a cosu sin v

y = b sinu sin v

z = c cos v

(12)

For a = b = c = 1, E is the unit sphere.
A family of spheres Sk, centered on E and with radius 1/k, where k > 0 is determined by the

implicit equation

(x− a · cosu sin v)2 + (y − b · sinu sin v)2 + (z − c · cos v)2 − 1

k2
= 0. (13)

We denote by Gk(x, y, z, u, v) the polynomial in the left-hand side of Equation (13). If the family
{Sk} has an envelope, it is determined by the solutions of Equations (11) for Gk. With Maple’s solve
command, we solve Equations (11); as the output involves the RootOf placeholder, we need to use
the allvalues command. Actually, in order to explore the envelopes for different values of the radius,
we write a procedure in Maple1; see [S2]:

with(plots):
# the given ellipsoid
srfce := plot3d([2*cos(u)*sin(v), sin(u)*sin(v), cos(v)], u = 0 .. 2*Pi,
v = 0 .. Pi, transparency = 0.5, color = red, scaling = constrained)
# the procedure
s := proc(k, a, b, c)
local G, derGu, derGv, envlp, envlp1, envlp2;

1It is often possible to modify the code, to make it shorter, sometime to use loops where we do not; what is proposed
can work with any version of the software.

The Electronic Journal of Mathematics and Technology, Volume 17, Number 2, ISSN 1933-2823

110



G := (x - a*cos(u)*sin(v))ˆ2 + (y - b*sin(u)*sin(v))ˆ2
+ (z - c*cos(v))ˆ2 - 1/kˆ2;
derGu := diff(G, u); derGv := diff(G, v);
envlp := allvalues(solve({G = 0, derGu = 0, derGv = 0}, {x, y, z}));
envlp1 := plot3d([rhs(envlp[1][1]), rhs(envlp[1][2]), rhs(envlp[1][3])],

u = 0 .. 2*Pi, v = 0 .. Pi, color = yellow, transparency = 0.5);
envlp2 := plot3d([rhs(envlp[2][1]), rhs(envlp[2][2]), rhs(envlp[2][3])],

u = 0 .. 2*Pi, v = 0 .. Pi, color = blue, transparency = 0.5);
display(sph, envlp2, envlp1);
end proc

Figure 9 shows the output of the procedure for (a, b, c) = (4, 2, 1) and radius r = 1/k equal to
2, 1, 1/2, 1/4.

(a) r = 2 (b) r = 1 (c) r = 1/2 (d) r = 1/4

Figure 9: Envelopes of spheres centred on an ellipsoid

We should mention that some experiments have been made writing them separately; only then a
general pattern appeared and enabled to write the code above, i.e. a loop. The various experiments
reveal that the envelope has always two components2, an external one seeming smooth, and an inter-
nal one which may have non-isolated singularities. The study of these singularities requires heavy
computational machinery. Two possibilities exist:

1. If an implicit equation of the envelope has been obtained, eventual candidates for singularity
are given by the vanishing of the gradient. For this, commands are available in various versions
such as Gradient or Nabla (in Maple’s VectorCalculus package they are equivalent). A non
trivial drawback is that it is generally impossible to distinguish the two components by algebraic
means. We mean that the equation is given by an irreducible polynomial, whose vanishing locus
is the union of two distinct components. Another difficulty is that it may be impossible (at least
in a reasonable time), to derive an implicit equation for the envelope. This happens with an
example described later. Sometimes, when a polynomial has been found for the envelope, the
singular locus can be obtained in an automated way, using the algcurv package and its command
singularities.

2Actually, each component is an envelope of the given family. The discussion of the non-uniqueness of an envelope is
beyond the scope of the present paper.
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2. Working with the parametric presentation of the envelope, the candidates for singularity are
given by the vanishing of the first derivative vector, which may be easier to find using the
CAS, but here too the computations may be unilluminating. The eventual singular points seem
to be non-isolated. Moreover, as shown in Figure 9, the singular locus may be the union of
two components. Here too, it is impossible to distinguish the two components by algebraic
manipulations.

4.2 Envelope of the family of unit spheres centered on an ellipsoid
The envelopes of families of circles centered on an ellipse have been en explored in [19]. In certain
cases they revealed isolated singular points, generally cusps. We explore now the family of unit
spheres centered on an ellipsoid, and the influence of the parameters a, b, c of the ellipsoid on the
shape of the envelope, namely on the existence of singular points. The experimental work, based
on visualization, leads to conjecture that the internal component of an envelope has generally non-
isolated singularities, but not always. On the one hand, this is not a surprise, as we shall encounter
such a situation in Section 2 with the cuspidal edge of an envelope of a family of planes. On the
other hand, the actual existence of these singularities has to be proven. For this, we use the algebraic
affordances of the software.

A canonical ellipsoid E , i.e. an ellipsoid having the coordinate axes as symmetry axes, is given by
the following polynomial equation:

x2

a2
+
y2

b2
+
z2

c2
= 1,

where a, b, c are positive real parameters, or equivalently, by the following parametrization:
x = a cosu cos v

y = b sinu cos v

z = c sin v

(14)

Actually, E has also a rational parametrization:

(x, y, z) =

(
2au

1 + u2 + v2
,

2bv

1 + u2 + v2
,
c (1− u2 − v2)
1 + u2 + v2

)
. (15)

The proof is similar to the proof for a circle in the plane (see [12]). Once again, a trigonometric
parametrization provides a more accurate plot than a rational one (see [43, 11]), and we use it for
graphics. For the algebraic computations, a rational parametrization such as given in Equation (15) is
preferred: it leads to polynomial equations, enabling the usage of Gröbner bases packages, elimination
and resultants; see [10, 11, 18].

We begin the exploration using GeoGebra, as the software allows to drag points directly on the
plot using the mouse. Plot the ellipsoid, and for a general point on it, plot a unit sphere centered at
this point. Figure 10(a) show three of the possible unit spheres. Using the Move point feature with
Trace On, we obtain the output displayed in Figure 10(b). The interaction man-and-machine, when
dragging points on the ellipsoid, provides a “cloudy” picture of what can be the envelope. Because of
the previous experience in 2D for envelopes of unit circles centered on an ellipse [19], we conjecture
that two components exist: one external, visible on the screen, and one internal, quite invisible here.

The Electronic Journal of Mathematics and Technology, Volume 17, Number 2, ISSN 1933-2823

112



(a) 3 unit spheres (b) experimenting the envelope

Figure 10: Dynamic exploration with GeoGebra

Even changing the transparency of the plots does not improve visibility of what happens inside the
ellipsoid. Therefore, switching to precise algebraic computations and plotting with a CAS is crucial
and yields a readable visualization.

With the trigonometric parametrization of the ellipsoid E in Eq. (14), we obtain a 2-parameter
implicit equation for the family of unit spheres centered on E :

(x− a cosu cos v)2 + (y − b sinu cos v)2 + (z − c sin v)2 − 1 = 0. (16)

Denote the left hand side of Equation (16) by F (x, y, z, u, v). According to Definition 5, an envelope
of the family of spheres, if it exists, is determined by the following system of equations:

(x− a cosu cos v)2 + (y − b sinu cos v)2 + (z − c sin v)2 − 1 = 0

(a2 − b2) sin 2u cos2 v + 2by cosu cos v − 2ax cos v sinu = 0

(a2 − b2) cos2 u sin 2v − 2ax cosu sin v + (b2 − c2) sin 2v
−2by sinu sin v + 2cz cos v = 0

(17)

Using the solve command, we obtain parametric presentations for two components. Denote

D = (((a2 − b2)c2 cos2 u+ a2(b2 − c2)) cos2 v − a2b2).

Then a parametric presentation for one component of the envelope is:

x = 1
D
[cosu (ac2((a2 − b2) cos2 u+ a(b2 − c2)) cos2 v − a3b2

+
√
−(((a2 − b2)c2 cos2 u+ (b2 − c2)a2) cos2 v − b2)b2c) cos v]

y = 1
D
[cos v (b((a2 − b2)c2 cos2 u+ a2(b2 − c2))] cos2 v − a2b3

+c sinu
√
−a2(((a2 − b2)c2 cos2 u+ (b2 − c2)a2) cos(v)2 − a2))]

z = 1
D
(
√
−b2a2(((a2 − b2)c2 cos2 u+ (b2 − c2)a2) cos2 v − a2b2) + c((c2(a2 − b2) cos2 u

+a2(b2 − c2) cos2 v − a2b2)) sin v
(18)
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and for the second component

x = 1
D
[cosu cos(v) (((−a2 + b2)ac2 cos2 u+ (−b2 + c2)a3) cos2 v − a3b2

+
√
−(((a2 − b2)c2 cos2 u+ (b2 − c2)) cos2 v − b2)b2c)

y = 1
D
[−b sinu (−((a2 − b2)c2 cos2 u+ a2b2 − a2c2) cos2 v + a2b3

+
√
−a2(((a2 − b2)c2 cos2 u+ (b2 − c2)a2) cos2 v − a2b2)c) cos v

z = 1
D
[sin v (−

√
−a2(((a2 − b2)c2 cos2 u+ a2(b2 − c2)) cos2 v − a2b2)b2

+((c2(a2 − b2) cos2 u+ a2(b2 − c2) cos2 v − a2b2) c)]

(19)

The algebraic differences are very small; actually as the equations are quadratic, the two compo-
nents correspond to each sign of the square root of a discriminant. This explains why, by successive
squaring, both parametrizations provide the same polynomials.

Figures 11 shows the case (a, b, c) = (5, 2, 1) and Figure 12 shows the case (a, b, c) = (4, 4, 2)

(a) general view (b) the internal component

Figure 11: Envelope of unit spheres centered on an ellipsoid - (a, b, c) = (5, 2, 1)

In both cases, the obtained envelope is the union of two components. The external one seems to be

(a) general view (b) the internal component

Figure 12: Envelope of unit spheres center on an ellipsoid - (a, b, c) = (4, 4, 2)

smooth, but the internal one seems to have singular points. It appears that, in the two examples, the
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sets of singular points have different structures, whence the need for a fine study. Nevertheless, more
experimental work reveals that this is not always the situation, as shown in Figure 13 for (a, b, c) =
(7, 4, 4).

(a) general view (b) the internal component

Figure 13: Envelope of unit spheres center on an ellipsoid - (a, b, c) = (7, 4, 4)

In order to study the singularities, we use the method described in [5], chap. 5.2. Equations (18)
determine a mapping F := R2 −→ R3. We rewrite Equations (18) in the form

(x, y, z) = (F1(u, v), F2(u, v), F3(u, v)),

defining a function F (u, v) = (F1(u, v), F2(u, v), F3(u, v)). Of course, the same method is applicable
for Equations (19). The Jacobian matrix of F is

JF :=


∂F1

∂u
∂F1

∂v

∂F2

∂u
∂F2

∂v

∂F3

∂u
∂F3

∂v

 (20)

Let us study the case where (a, b, c) = (4, 3, 1). Using the LinearAlgebra package and the command
Rank, we find that generically, the rank of this matrix is equal to 2. This mapping is regular at points
where its Jacobian matrix has maximal rank. The singular points are the vanishing points of the 3
minors of the matrix. The Jacobian is computed by the command Jacobian from Maple’s Vector-
Calculus package. Then, in order to use the Minor command from the LinearAlgebra package, it is
necessary to add a column on the right of the Jacobian matrix. This, and the subsequent computations,
can be unilluminating, and we did not obtain a result in a ”reasonable” time. Therefore we went in
another direction.

At this point, we wish to recall a study from [19]: the envelope of a family of circles centered on
an ellipse shows generally two components. The external one is smooth, and the internal one has four
cusps. An example is displayed in Figure 14. The case r = 1 seems to have 2 smooth components;
this can be easily proven. For r = 2, the plot suggests that there may be 2 singular points. If r = 3,
we identify an internal component with 4 cusps. In all these cases, the algebraic computations are
similar, the actual way depending on whether the curve is given by a parametrization or by an implicit
equation.
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(a) r = 1 (b) r = 2 (c) r = 3

Figure 14: Families of circles centred on the same ellipse with radii 1,2,3.

For our problem here in 3D, the parametric presentation of the envelope is quite heavy. We may
intersect the ellipsoid and the two components by a plane parallel to a coordinate plane, as shown in
Figure 15. What remains to do is to prove that the plane curve obtained as the intersection of the plane

(a) (b)

Figure 15: The intersection of a plane with the surfaces - cusps appear

with the internal component of the envelope has generally 4 cusps. This is standard work in a plane.
We said earlier that the usage of a trigonometric parametrization yields a nice output; see [43].

This is the reason why we began as above. Nevertheless, the study of singularities should be easier
with an implicit equation. For this purpose, it is more efficient to use a rational parametrization of
the surface (if possible), leading to polynomial expressions and enabling further use of the Gröbner
package. Of course, in theory, this may be possible only with rational curves.

We start from the rational parametrization of the ellipsoid in Equation (15). We consider now the
family of unit spheres centered on the ellipsoid E . Their general equation is:(

x− 2au

1 + u2 + v2

)2

+

(
y − 2bv

1 + u2 + v2

)2

+

(
z − c 1− u2 − v2

1 + u2 + v2

)2

− 1 = 0. (21)

Denote the left-hand side by F (x, y, z, a, b). We solve now the corresponding system of equations
(5). The desired envelope has 2 components. As the output is quite heavy, we do not present it here;
we provide Maple code in a companion file. Transforming the parametric equations into polynomials
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using expand, sort, and commands from the Gröbner package with the grlex option, we obtain 3
polynomials in 5 variables. Here are the polynomials for (a, b, c) = (4, 3, 1):

P1(x, y, z, u, v) = (9216 + (576v2 + 36)x2)u6 + (18432v2 − 16164 + (864v4 + 136v2 − 216)x2)u4

+ (9216v4 − 14408v2 + 9144 + (576v6 + 164v4 − 376v2 + 36)x2)u2

+ 144(v2 + 1)2
(
−1

4
+

(
v4 − 14

9
v2 + 1

)
x2
)
− 2304u7x

+ (−6912v2 + 1728)u5x+ (−6912v4 + 3008v2 + 1728)u3x

− 2304(v2 + 1)

(
v4 − 14

9
v2 + 1

)
ux+ 144u8x2

P2(x, y, z, u, v) = (11520 + (1296u2 + 144)y2)v6 + (23040u2 − 18432 + (1944u4 + 369u2 − 360)y2)v4

+ (11520u4 − 20700u2 + 11520 + (1296u6 + 306u4 − 846u2 + 144)y2)v2 − 3888v7y

+ (−11664u2 + 2160)v5y + (−11664u4 + 5076u2 + 2160)v3y

− 3888(u2 + 1)

(
u4 − 7

4
u2 + 1

)
vy + 324v8y2 + 324(u2 + 1)2

(
u4 − 7

4
u2 + 1

)
y2

P3(x, y, z, u, v) = −135
(
u2 +

128

135
v2
)
)(u2 + v2 − 1)2

+ 72(u2 + v2 + 1)

(
u4 +

(
2v2 − 7

4

)
u2 + v4 − 14

9
v2 + 1

)
(u2 + v2 − 1)z

+ 36(u2 + v2 + 1)2
(
u4 +

(
2v2 − 7

4

)
u2 + v4 − 14

9
v2 + 1

)
z2

What remains to be done is to define an ideal J =< P1, P2, P3 > in R[x, y, z, u, v] generated by
these 3 polynomials and to eliminate the variables u, v. One method is to use the EliminationIdeal
command. Its output is an ideal JE in R[x, y, z]. The desired envelope is contained in the variety
V (JE). Actually, the variety V (JE) is the Zariski closure od the envelope. Other methods exist, also
implemented in various CAS. Nevertheless, at the time we write, we were unable to obtain an answer
using the CAS in a reasonable time3. Indeed, implicitization is an important issue, in particular for
engineers, but we explained earlier how to work without an implicit equation. Let us mention that,
when needed, approximate methods have been developed, for example in [40].

4.3 A 3D version of a nephroid
Denote by S the unit sphere centered at the origin. It has the following parametric presentation:

x = cosu cos v

y = cosu sin v

z = sinu

, u ∈ [0, 2π], v ∈ [0, π]. (22)

A sphere Su,v centered on S and tangent to the xy-plane has a radius equal to
∣∣sinu∣∣, whence an

equation of the form F (x, y, z) = 0, where the following holds:

F (x, y, z) = (x− cosu cos v)2 + (y − cosu sin v)2 + (z − sinu)2 − sin2 u. (23)
3Z. Kovács tried also to make this. After 12 hours, the computer crashed, having run out of memory. I thank him (not

the computer) here for the effort.
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According to Definition 5, an envelope of this family of spheres, if it exists, is the solution set of the
following system of equations:

(x− cosu cos v)2 + (y − cosu sin v)2 + (z − sinu)2 − sin2 u = 0

2 (x− cos(u) cos(v)) sin(u) cos(v) + 2 (y − cos(u) sin(v)) sin(u) sin(v)

−2 (z − sin(u)) cos(u)− 2 sin(u) cos(u) = 0

2 (x− cos(u) cos(v)) cos(u) sin(v)− 2 (y − cos(u) sin(v)) cos(u) cos(v) = 0

(24)

The output of the solve command shows two components. The first one is given by

{x = cos(u) cos(v) , y = cos(u) sin(v) , z = 0} (25)

and the 2nd one by{
x = cos(v) cos(u)

(
2 sin(u)2 + 1

)
, y = cos(u) sin(v)

(
2 sin(u)2 + 1

)
, z = 2 sin(u)3

}
(26)

Equation (25) describes the unit circle on the xy−plane. This is an expected case: a sphere Su,v
whose center is on the xy−plane is actually reduced to a single point, and these centers form exactly
the unit disk of this plane. Equation (26) describes a non degenerate component. Figure 16 shows, on
the envelope in (a), and the envelope (more transparent), with the unit sphere and one of the spheres
of the family in (b); a worksheet is available as [S3].

(a) (b)

Figure 16:

Note that the sphere, element of the family, is a less accurate plot: it has been plotted using the
implicitplot3d command, while the other surfaces have been obtained by a parametric plot. This
issue has been discussed in [43]. The command sphere is also available and provides a parametric
plot. In the present case, it is not a crucial issue.
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It is well known that for every u ∈ [0, 2π], there exists s ∈ R such that cosu = 1−r2

1+r2
and sinu =

2r
1+r2

. write similar formulas for cos v and sin v as rational functions of a real s. Using these formulas,
we transform the trigonometric parametrization of the envelope (26) into a rational parametrization,
which can be implicitized, by the process described earlier. The following polynomials are obtained:

P1(x, y, z, r, s) =r
6s2x− r6s2 + r6x+ 3r4s2x+ r6 − 9r4s2 + 3r4x+ 3r2s2x

+ 9r4 + 9r2s2 + 3r2x+ s2x− 9r2 + s2 + x− 1

P2(x, y, z, r, s) =r
6s2y + 2r6s+ r6y + 3r4s2y + 18r4s+ 3r4y

+ 3r2s2y − 18r2s+ 3r2y + s2y − 2s+ y

P3(x, y, z, r, s) =r
6z + 3r4z − 16r3 + 3r2z + z

Denote JN =< P1, P2, P3 > the ideal that they generate in R[x, y, z, r, s]. By elimination of the
parameters r, s, we obtain an ideal JEN in R[x, y, z] generated by a single polynomial. The generator
of JEN that we obtained is the following polynomial:

F (x, y, z) = (z − 2)(z + 2)(2z2 + 1)(4x6 + 12x4y2 + 12x4z2 + 12x2y4 + 24x2y2z2 + 12x2z4

+ 4y6 + 12y4z2 + 12y2z4 + 4z6 − 12x4 − 24x2y2 − 24x2z2 − 12y4 − 24y2z2

− 12z4 + 12x2 + 12y2 − 15z2 − 4)

The envelope that we are looking for is the variety V (F ).
The first two factors correspond to two tangent planes to the obtained surface, which are parallel

to the xy-plane, the 3rd factor has no real root, and the last factor gives an implicit equation of the
surface. No surprise, it is of degree 6.

5 Discussion
The Institut Henri Poincaré in Paris has a large collection of physical models of surfaces in 3-
dimensional space. These models have been built in 19th century, and not many people know about
their existence. Such collections exist at other institutions around the world, but this one is really
impressive. It has been also photographed, at least partially, by Man Ray. A recent description has
been written by Apéry [1], accompanied by photos. Some of them are known as envelopes of specific
families of surfaces.

Constructions with wood or other materials are a wonderful tool for teaching. It seems that it
is not fully known how the Parisian models have been calculated and constructed. However, other
techniques exist today, such as 3D printing. This modern technology requests the description of the
surface by mathematical means and their implementation into mathematical software and from there
into the language understood by the 3D printer. Whence the importance to acquire the needed math-
ematical skills, accompanied by the requested technological discourse, according to Artigue [2]. It is
common sense that the usage of a Computer Algebra System has here two main components, alge-
braic and graphical. The first one requests mathematical knowledge, such as in described in Section
2, in particular regarding the different definitions of envelopes. The computations in the above exam-
ples have been performed according to Definitions 2 and 5, and not according to Definition 4, a 3D
version of what Kock calls an impredicative definition [27]. Then the CAS is used to solve systems of
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equations and simplify the output; note that among the requirements from a CAS, simplification tools,
including trigonometric simplification and factorization, are very important [15]. When working with
rational parametrizations of surfaces, the CAS tools for computing in polynomial ideals (Gröbner
bases, elimination, etc.) are important; see [10]. The graphical part requests understanding of the
difference in quality between implicit plots and parametric plots. 3D printing avoids the problem of
visualisation on a screen, i.e., a copy of a plane, of an object in 3D such as a space curve or a surface,
but raise other issues. Many of the educational benefits of this technology are described in [30].

In education, special attention should be given to the fact that questions may remain without a full
answer. In Section 4.1, we could derive a parametric representation of the envelope under study, but
were unable to obtain an implicit equation, probably because the computations were too heavy for
our current system. At a certain extent, the usage of multiple technologies may help fill the gap, at
least for the exploratory part of the work. After all, in education, open problems are more appealing
than final answers, and the 5th C of education, namely Curiosity, may not be the least important.

Working out examples of rational curves and radii given by rational function provides a setting
where polynomials can be derived and the algebraic packages of the CAS can be applied. Neverthe-
less, the meaning of the parameter has an influence. For example, we refer to the difference between
a rational and a trigonometric parametrization of a circle. The second case gives a more uniform be-
haviour of the animations, and the plot is also more readable; see [19]. For more advanced examples,
in particular in 3D, other choices of the mesh may be useful; Maple has about 20 different options for
the choice of the mesh. But their usage depends in the user’s literacy with the CAS; see also [43]. We
did not use such options for the sake of the reader who may not be familiar with their usage.

In any case, visualization is the name of the game. It requests its own technological skills. The
transition from 2D to 3D made dragging points less useful for exploration4. In general, the automated
tools available in 2D are not always available in 3D. As an example, GeoGebra-Discovery has a
command for certain kinds of envelopes of families of plane curves, but nor for surfaces in 3D space.
Nevertheless, some of the tools that we used with Maple belong to the category of automated tools.
Note that for certain computations we use Gröbner packages, whose algorithms are present in the
programming of certain automated tools. The mouse is still the good tool to rotate the plot in order
to have numerous viewpoints, but it is difficult to identify a point on a given surface shown on the
screen. A consequence is that the respective roles of the different kinds of software, CAS and DGS,
change with the transition from 2D to 3D. The dialog between CAS and DGS evoked in [18] for 2D
should be improved in 3D also. This needed dialog has been already evoked in the past in [36, 37],
but there is still a lot to do.

Finally, we wish to emphasize that we chose to work mostly with Definition 2, called analytic by
Kock [27]. This is the easiest for computing. Thom [41] mentioned that the theory of envelopes has
few theorems and numerous special cases. Therefore, 1-parameter and more than that, 2-parameter
families of surfaces may reserve numerous interesting cases. We must still mention that the different
definitions of an envelope correspond to different problems, safety zones, robotic paths, design of
pipeline networks, etc. They may be a source of inspiration for artistic work also.

4The interest in dragging points in the plane is described in [39].

The Electronic Journal of Mathematics and Technology, Volume 17, Number 2, ISSN 1933-2823

120



6 Acknowledgements
The first author’s work has been partially supported by the Roland and Astrid CEMJ Chair at JCT.

7 Supplementary Electronic Material

[S1] Maple worksheet for the plane with trigonometric coefficients, in Section 1.
[S2] Maple worksheet for the envelopes of spheres centered on an ellipsoid, in subsection 4.1.
[S3] Maple worksheet for a 3D nephroid, in subsection 4.3.
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[32] Kovács, Z., Recio, T., Richard, P., Van Vaerenbergh, S. and Velez, P. (2020). Towards an
ecosystem for computer-supported geometric reasoning, International Journal of Mathematics
in Science and Technology 53 (7), 1701-1710. https://doi.org/10.1080/0020739X.
2020.1837400
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41 (2), 177-192.

[42] Trouche, L. , Drijvers, P.. Gueuedt, G. and Sacristan, A.I. (2013). Technology-driven devel-
opments and policy implications for mathematics education. In (clements, M.A., Bishop, A.J.,
Keitel-Kreidt C., Kilp[atrick, J. and Leung, F.K.S., edts.), Third international handbook of math-
emagtics education 1/e, 753-789. NY: Springer.

[43] Zeitoun, D. and Dana-Picard, Th. (2019). On the usage of different coordinate systems for 3D
plots of functions of two real variables, Mathematics in Computer Science 13, 311-327.

[44] Zeitoun, D. and Dana-Picard, Th. (2022). Delineation of the Zone of Influence of Pumping Wells
using CAS and DGS, the Electronic Proceedings of the Asian Conference on Technology in Math-
ematics ACTM 2021, Mathematics and Technology.

The Electronic Journal of Mathematics and Technology, Volume 17, Number 2, ISSN 1933-2823

124

https://www.oecd.org/education/2030-project/teaching-and-learning/learning/learning-compass-2030/OECD_Learning_Compass_2030_Concept_Note_Series.pdf
https://www.oecd.org/education/2030-project/teaching-and-learning/learning/learning-compass-2030/OECD_Learning_Compass_2030_Concept_Note_Series.pdf
https://www.oecd.org/education/2030-project/teaching-and-learning/learning/learning-compass-2030/OECD_Learning_Compass_2030_Concept_Note_Series.pdf
https://www.oecd.org/education/2030-project/teaching-and-learning/learning/learning-compass-2030/OECD_Learning_Compass_2030_Concept_Note_Series.pdf
https://doi.org/10.1007/s11786-020-00489-7
https://doi.org/10.1007/s11786-020-00489-7
10.1007/s10639-022-11406-9
https://doi.org/10.1007/s00200-011-0149-1
https://doi.org/10.1007/s00200-011-0149-1

	Introduction
	Envelopes of families of plane curves
	Envelopes of families of surfaces
	First example of a family of planes: polynomial coefficients
	Second example: trigonometrical coefficients

	Envelopes of 2-parameter families of surfaces
	Envelope of a 2-parameter family of spheres
	Envelope of the family of unit spheres centered on an ellipsoid
	A 3D version of a nephroid

	Discussion
	Acknowledgements
	Supplementary Electronic Material



